
UNCLASSIFIED: Dist A. Approved for public release 

2011 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM 
VEHICLE ELECTRONICS AND ARCHITECTURE (VEA) MINI-SYMPOSIUM 

AUGUST 9-11 DEARBORN, MICHIGAN 

 
 

SOFTWARE RELIABILITY PREDICTION FOR ARMY VEHICLE 
 

Macam S. Dattathreya 
TARDEC 

Warren, MI 

 Harpreet Singh 
Wayne State University 

Detroit, MI 
 

ABSTRACT 
Army vehicles are complex due to various on-board mission critical communication devices. The Army 

cannot afford unreliable software to interact between the devices. The Army vehicle software’s reliability is 

influenced by multiple factors during or prior to its development. Using complex statistical and mathematical 

models, software’s reliability can be predicted, but it is dependent on the accuracy and context of the historical 

software failure data. The cost of developing such complex models does not yield a good return on investment. 

The data collection process to use these models is very difficult and time consuming. In this paper, we propose 

reliability metrics based on the current software development and design process factors. We also propose a 

fuzzy logic based software reliability prediction algorithm using the proposed reliability metrics. 

 

INTRODUCTION 
Software reliability is one of the growing challenges for 

the on-board devices in an Army‟s combat vehicle (CV). 

During combat missions, soldiers perform complex 

operations using the devices. Each device has its own 

software and we refer to it as Army vehicle software (AVS). 

Combat command and control, and vehicle management are 

some examples of AVS. An AVS performs its intended 

functions when needed. This allows defending against the 

enemy threats and protecting the soldiers. Therefore, AVS 

reliability is a key factor for successful missions.  

An AVS is considered reliable when it exhibits all its 

designed features with no defects at all times when it is 

operated in multiple predefined environments and 

conditions. We use the term AVS reliability to refer to a 

probability of defect-free condition for a given AVS. As the 

probability of defects increases, the AVS reliability 

decreases. 

Normally, testing reveals software defects and the 

developers correct them before it is used in practice. This 

process assures that the software is reliable when it is used in 

a combat mission. However, fixing the defects after they are 

found during testing is costly; it is always better to apply 

efficient techniques during early development phases and 

avoid future defects in the software. For early development 

phases, researchers have proposed several complex 

mathematical and statistical techniques to predict the 

probability of future defects in the software. These 

techniques require skilled resources to use them. The Army 

tends to react to a dynamic situation and they need easy to 

understand software reliability prediction techniques. 

Multiple factors during a software development process 

influences AVS reliability. The Army pays considerable 

attention to predict AVS reliability using easy to understand 

techniques. The AVS reliability measures software quality. 

Ensuring AVS reliability is absolutely essential [1].  

Software architects develop IT architecture documents 

(ITAD) during early design phases of an AVS development 

project. ITAD reflect how the software will be implemented 

and tested. Therefore, ITAD captures necessary details for a 

successful software development project. We can investigate 

ITAD and formulate reliability metrics and then use them to 

develop AVS reliability prediction techniques.  

In this paper, we propose the following: 

1. Deriving AVS reliability metrics from ITAD.  

2. AVS reliability prediction algorithm using fuzzy logic 

and the derived AVS reliability metrics.  

   Our research is in its initial stages. In this paper, we 

introduce our approach and an initial solution to predict 

AVS reliability. We describe the proposed solution in this 

paper using an example dataset that we developed to 

introduce the concept. We are in the process of validating 

our work for a practical AVS development project. 

 

RELATED WORK 
Most of the architecture related predictions surveyed in [2] 

are dependent on the software structure or the type of 

modeling languages used. 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 2 of 9 

Mohanta et al. provide an approach in [3] to derive design 

metrics and use them in a Bayesian Belief Network to 

predict software reliability. In this approach, the prediction 

accuracy depends on the accuracy of how well the design 

metrics are derived. In many cases, it is overkill and 

restrictive. 

Wang et al. recommend a state model framework in [4] 

using software architecture as a basis for reliability 

prediction. In this approach, designers create a Unified 

Modeling Language (UML) state model for individual 

components of a software program and then solve a Markov 

Chain process problem to predict reliability. Although this is 

a good approach, dissecting the UML architecture to identify 

its structure to evaluate future problems is cumbersome and 

error prone. It also has a dependency on the type of 

architecture style used to document software architecture. 

Goseva-Popstojanova et al. propose a prediction method 

[5] using component interaction within software 

architectures. This method is based on analytical approaches 

using control graphs. Possible execution paths within 

software programs are also used to predict reliability. 

Identifying and analyzing the architecture construct is time 

consuming and complex. It also depends on the style used to 

develop software architectures. 

Gokhale et al. provide a framework for predicting software 

reliability [6] using composite models built from individual 

architecture components and their failure behavior. A 

prediction using this method is accurate only when one 

understands all the component interfaces and their failure 

behaviors. The model used in this approach is too analytical 

and it is very hard to collect data and process it to predict 

reliability. 

Nagappan et al. provide a list of metrics [7] for early 

software tests and reliability early warning. But most of the 

metrics are derived after the software and test cases are 

written. So, the early prediction here only serves to predict 

reliability before the software is fielded and used in practice. 

Smidts et al. recommend a fault tree based Bayesian 

quantification framework [8] to evaluate software reliability 

using software functional architectures which represent both 

functional and non-functional requirements. This framework 

concentrates on studying or experimenting with software 

which is already developed. This cannot be used for early 

predictions. 

Kong et al. provide a cause and effect Graphing Analysis 

[9] approach for early software reliability prediction by 

identifying errors in the software requirements specification 

(SRS) document. Every SRS document is written differently, 

and this method does not provide any techniques to identify 

defects in terms of incompleteness, inconsistencies, 

ambiguities, and redundancies in each software requirement.  

Yacoub et al. propose a scenario based reliability analysis 

[10] technique for component-based software using the path-

based approach introduced in [5]. This approach models 

component interactions using a component-dependency 

graph. This technique is too analytical and the complexity 

grows as the number of components within the software 

increases. Furthermore the data collection process is 

cumbersome. 

 

 

AVS RELIABILITY METRICS 
ITAD captures the information required to transform user 

requirements into tangible implementation. Some ITAD are 

pure text documents and some are built using modeling 

languages such as UML. ITAD describes requirements 

realization without providing low level implementation 

details. The developers use ITAD for developing specific 

solution designs. 

At any point of time during a software development 

project, any person with ordinary computer skill can take a 

snapshot of information from ITAD and derive fault 

handling (F) mechanisms, data handling (D), 

interoperability (I), and configurability (C) details 

documented in the ITAD.  

AVS project managers can use the derived „D‟, „I‟, „C‟, 

and „F‟ values as metrics at any phase of an AVS 

development project and then use them to predict AVS 

reliability. Project managers can rectify issues and predict 

reliability again to determine if the reliability has improved. 

We describe how to derive AVS reliability metrics using 

ITAD information in next few sections. 

 

Data handling (D) 
We can quantify data handling to represent the 

understanding of the required data and its characteristics, 

and the test cases planned for them.  Using this, we can 

determine the impact of „D‟ on AVS reliability. As the „D‟ 

value calculated from (1) increases, the AVS reliability 

decreases.  

 

 
1

1

1

323
D

T

D

DD
D 




                                    (1) 

 

Where, 

D1 = required number of distinct data elements.  

D2 = number of distinct data elements captured with 

necessary details. 

D3 = number of distinct data elements that have captured 

required data characteristics. 

T1 = total test cases for all the data elements. It is 

calculated using (2). 

 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 3 of 9 

 





1

1

1

1

1

D

I c

N

i

Ii

N

T

T

c

          (2) 

 

Where, T1I = number of test cases that are planned for 

testing all data characteristics per data element. I.e., every 

data element must have at least one test case planned for 

every data characteristic. Nc = total number of data 

characteristics. I = I
th

 data element in D1, and i= i
th

 data 

characteristic in Nc. For example, assume Nc = 3 and D1 = 3, 

Then the T1Ii can be represented as: T111, T112, T113, 

T121, T122, T123, T131, T132, and T133. For the 1
st
 data 

element, if the 1
st
 data characteristic has a test case planned, 

then T111 takes the value of 1 else it takes the value of 0. 

Similarly all other T1xx can be calculated. 

The most important data characteristics are: processing 

requirements, data format, the security constraints, data size 

limitations, and the data storage requirements. 

Understanding the data elements during early phases of an 

AVS development improves the quality of AVS design, and 

it reduces future defects. If fewer data elements are known 

and fewer test cases are planned than the actual required data 

elements, then „D‟ poses a major negative impact on 

achieving AVS reliability. Each required data element with 

its details has to be known and should have at least one test 

case planned to test each of the data characteristics. This 

avoids any future surprises.  

 

Interoperability (I) 
Based on the IEEE definition, interoperability is the 

capability of an AVS to exchange and use data in an 

operating environment within predefined access restrictions. 

An interoperable AVS is expected to understand all the 

available interfaces when exchanging data with other AVSs. 

This capability enables an AVS to produce reliable 

operations. 

We can quantify interoperability to represent the 

understanding of the required inputs and outputs, and the test 

cases planned for them.  Using this, we can determine the 

impact of „I‟ on AVS reliability. As the „I‟ value calculated 

from (3) increases, the AVS reliability decreases. 

 








 





1

1063

1

2

1

842

1

28
O

TTT

O

O

I

TTT

I

I
I   (3) 

 

Where, 

I1 = required number of distinct inputs. 

I2 = number of distinct inputs captured with necessary 

details. 

O1 = required number of distinct outputs. 

O2 = number of distinct outputs captured with necessary 

details. 

T2 = total test cases planned for testing all the details for 

all the inputs. It is calculated using (4). 

 







1

1

1

2

2

I

I i

N

i

Ii

N

T

T

i

          (4) 

 

T3 = total test cases planned for testing all the details for 

all the outputs. It is calculated using (5). 

 







1

1

1

3

3

O

I o

N

i

Ii

N

T

T

o

               (5) 

 

Where, T2I and T3I are the number of test cases planned for 

testing all the details per input and output, respectively. I.e., 

every input and output must have at least one test case 

planned for every detail. Ni and No are the total number of 

input and output details, respectively. I = I
th

 input in I1 and 

I
th

 output in O1, respectively.  i= i
th

 detail in Ni and i
th

 detail 

in No, respectively. For the I
th

 input, if the 1
st
 detail has a test 

case planned, then T211 takes the value of 1 else it takes the 

value of 0.  The same rule applies toT311 also. Similarly all 

the other T2xx and T3xx can be calculated. 

 

T4 = number of distinct inputs planned for testing its event 

logging. 

T6 = number of distinct outputs planned for testing its 

event logging. 

T8 = number of distinct inputs planned for testing its fault 

handling. 

T10 = number of distinct outputs planned for testing its 

fault handling. 

 

An AVS may have one or many input sources and one or 

many output destinations.  The complete knowledge of the 

following reduces defect rates and increases AVS reliability: 

1. From where are the inputs received and to where will 

the outputs be delivered? 

2. The security constraints between the input sources  

AVS and AVS  output destinations.  

3. The transport mechanism for all inputs and output 

deliveries e.g., frequency, mode of initiation 

(automatic push or pull). 

Understanding the inputs and outputs early in the design 

phase improves the quality of AVS design and development, 

and it reduces future defects. If fewer inputs or outputs 

details are known and fewer test cases are planned than the 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 4 of 9 

actual required inputs or outputs, then the „I‟ poses a major 

negative impact on achieving AVS reliability. Each required 

input and output with its details has to be known and should 

have at least one test case planned to test each of the details. 

This avoids any future surprises. 

 

Configurability (C)  
We can quantify configurability to represent the 

configurability planned for each data elements, inputs, and 

outputs, and the test cases planned for them.  Using this, we 

can determine the impact of „C‟ on AVS reliability. As the 

„C‟ value calculated from (6) increases, the AVS reliability 

decreases. 

 

  









 











1

117

1

42

1

95

1

318
O

TT

O

CC

I

TT

I

CC
C    (6) 

Where, 

C1 and C2 are the number of distinct inputs and outputs, 

respectively planned for configurable event logging. 

C3 and C4 are the number of distinct inputs and outputs, 

respectively planned for configurable fault handling. 

 

T5 and T7 are the number of distinct inputs and outputs, 

respectively planned for testing its configurable event 

logging. 

T9 and T11 are the number of distinct inputs and outputs, 

respectively planned for testing its configurable fault 

handling. 

 

Event logging mechanisms minimize confusion in dealing 

with operational faults. Configurable event logging enables 

the users or the maintainers to understand what really went 

wrong or why a specific scenario executed when something 

else was expected. When developers or testers exercise this 

feature, it enables them to understand and fix problems 

correctly.  It enhances the defect removal process and 

increases AVS reliability. 

If configurability is planned for each of the data elements, 

inputs, and outputs, it enables an AVS to operate in multiple 

operating environments and conditions. If no configurability 

is planned, there is no easy way to allow it to work in 

multiple operating environments without changing the code. 

Using configurability in an AVS improves the quality of 

AVS design and development, and it reduces the abrupt 

failures when it is operated in an unknown environment for 

which no code exists. If fewer configurability contingencies 

are planned and fewer test cases are planned than the actual 

required inputs or outputs or data elements, then „C‟ poses a 

major negative impact on achieving AVS reliability. Each 

required input, output, and data element with its details has 

to be planned for configurability and should have at least 

one test case planned to test each configurable option. This 

avoids any future surprises and problems. 

 

Fault handling (F) 
We can quantify fault handling to represent the fault 

handling mechanisms planned for each data elements, input, 

and output, and the test cases planned for them.  Using this, 

we can determine the impact of „F‟ on AVS reliability. As 

the „F‟ value calculated from (7) increases, the AVS 

reliability decreases. 

 

















1

10

1

8

1

22

1

116
O

T

I

T

O

FE

I

FE
F               (7) 

Where, 

E1 = number of distinct inputs planned for event logging. 

F1 = number of distinct inputs planned for fault handling. 

 

E2 = number of distinct outputs planned for event logging. 

F2 = number of distinct outputs planned for fault handling. 

 

T8 = number of distinct inputs planned for testing its fault 

handling. 

T10 = number of distinct outputs planned for testing its 

fault handling. 

 

Fault handling mechanisms allow users to get graceful 

notifications during a failure through readable messages 

instead of ending the program abruptly. Using proper fault 

handlers indicates problem areas and the reasons for it. This 

allows users to take corrective actions to increase the 

reliability of AVS operations e.g., when the user enters 

invalid data in an AVS, instead of ending the AVS operation 

abruptly, a fault handling mechanism in an AVS notifies the 

user to rectify the data and allow re-execution of the 

operation. This allows successful operation and increases 

AVS reliability. 

If fault handing mechanisms are planned for each of the 

data elements, inputs, and outputs, it enables developers to 

understand the details of when and how a fault happens. If 

no fault handling is planned, there is no easy way to 

gracefully inform the user of any faults or errors. Using fault 

handling improves the quality of AVS design and 

development, and it reduces abrupt failures. If fewer fault 

handlings are planned and fewer test cases are planned than 

the actual required inputs or outputs or data elements then 

the „F‟ poses a major negative impact on achieving AVS 

reliability. Each required input, output, and data element 

with its details has to be planned for fault handling and they 

should have at least one test case planned to test each fault 

handling mechanism.  



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 5 of 9 

All the parameters described above are simple to 

understand and a person with no special skills can gather 

them very easily from reading ITAD.  

In the next section, we describe how the metrics defined in 

this section can be used to predict AVS reliability. For a 

given AVS development project, all four metric elements 

have to be measured or assessed. Each metric element has a 

default value as shown in Table 1. 

 

Table .1 Metric elements default values 

 
 

 

 

AVS RELIABILITY PREDICTION ALGORITHM 
In this section, we describe our proposed AVS reliability 

prediction algorithm. This algorithm is based on fuzzy logic 

and it uses AVS reliability metrics.  Figure 1 depicts an 

outline of the prediction algorithm for a given AVS 

development project. 

 

ITAD

Collect Data

Collect D, I, F and C

D

Apply AVS 

Reliability Fuzzy

Rules

Defuzzify - MOM 

(Mean value of 

maximum)

Compute 

Reliability 

Compute T1 

using (2)

Compute T2 

using (4)

Compute T3 

using (5)

Compute D 

using (1)

T1

Compute I 

using (3)

T2

T3

I

Compute F 

using (7)

Compute C 

using (6)

Fuzzify D, I, F, 

and C

C

F

 

Figure.1 AVS Reliability prediction algorithm outline 

 

The Algorithm is as follows: 

 

1. For every AVS project 

2.   Docs  Collect ITAD() 

3.   Begin 

4.          Data  Populate Data (Docs) 

5.         MetricData   ReadInputs (Data) 

6.         D  Compute DataHandling(Metricdata) 

7.         I  Compute Interoperability (Metricdata) 

8.        F  Compute FaultHandling(Metricdata) 

9.        C  Compute Configurability (Metricdata) 

10.       Fuzzy_inputs  fuzzify (D,I,F,C) 

11.       Fuzzy_rules  GetFuzzyRules () 

12.       Y  AppliedFuzzyRule 

13.        For each fuzzy_rule in the Fuzzy_rules  

14.            Begin 

15.                Y   ApplyFuzzyRules (D,I,F,C, Fuzzy_rule) 

16.                Y  AggregateUsingMoM(Y) 

17.         End for 

18.         R  ComputeReliabilityFromDefuzzfiation (Y) 

19.    End for 

 

In the algorithm, the first few steps are for deriving AVS 

reliability metrics using ITAD information. The details of 

the derivation are discussed in earlier sections. In this 

section, we describe the prediction portion of the algorithm.  

We predict AVS reliability based on AVS reliability 

metrics („D‟, „I‟, „C‟, and „F‟). The prediction is performed 

using an approximation process. Because of the vagueness in 

the metrics values, approximation has to be done using 

imprecise data. We use fuzzy logic [12] for this situation. 

Fuzzy logic is a soft computing heuristic technique based on 

the fuzzy sets theory [11]. Refer to [13] for additional 

information on fuzzy logic. 

Fuzzy set of elements have different truth values 

(membership grades) ranging between 0 and 1. For example, 

a fuzzy set of very tall people can be represented as S= {7‟, 

7‟5”, 6‟5”, 6‟, and 5‟}, using expert knowledge, the grades 

of membership for this set can be defined as 0.9, 1, 0.8, 0.7, 

and 0.3. In this example, „very tall people” is a linguistic 

term to represent a set of people‟s heights.  

If X is a set denoted by Y, then a fuzzy set S in X is a set 

of ordered pairs i.e., S = {(x, µY(x)) | x ε X}, e.g., S = {(7‟, 

0.9), (7‟5”, 1), (6‟5”, 0.8), (6‟, 0.7), (5‟, 0.3)}. 

After the metric values are calculated, the algorithm uses 

the following main steps to predict AVS reliability as a 

number. 

1. Fuzzify inputs 

2. Apply fuzzy rules 

3. Defuzzify results 

We explain our algorithm using an example. Assume the 

ITAD are investigated and the values of „D‟, „I‟, „C‟, and „F‟ 

are calculated to be „D‟ = 0.225, „I‟ = 0.45, „C‟ = 0.4, and 

„F‟ = 0.26. 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 6 of 9 

The fuzzification or fuzzify step assigns a specific 

membership to each crisp input. The membership is a 

membership function and a membership grade. We suggest 

using a triangular membership function for each input 

(Figure 2 through Figure 5). A membership function is a plot 

of points which reflect how each input point from the input 

space is mapped to membership grades ranging between 0 

and 1. 

 

 
Figure.2 Data Handling (D) fuzzy membership functions 

 

 

 

 

 
Figure.3 Interoperability (I) fuzzy membership functions 

 

 

 

 

 
Figure.4 Fault Handling (F) fuzzy membership functions 

 

 
Figure.5 Configurability (C) fuzzy membership functions 

 

Table .2 Linguistic triangular membership variables 

 
 

In Table 2, the „Linguistic terms‟ column represents a 

membership function‟s labels. The „D‟ value of 0.225 

belongs to two functions i.e., „L‟ and „LM‟. The 

fuzzification (Figure 6) process determines an appropriate 

membership assignment for it.  

 

 
Figure.6 Fuzzification process 

 

As shown in Figure 6, 0.225 has a membership grade μLM 

= 0.11 for the „LM‟ membership function and a membership 

grade μL = 0.3 for the „L‟ membership function. In this 

situation, the fuzzification process assigns a maximum of 

two membership grades i.e., max (μLM, μL). For 0.225, the 

„L‟ membership function with a membership grade of 0.3 is 

the maximum. If „L‟ had no overlapping with „LM‟, then 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 7 of 9 

there is no need for a maximum function check, and a μL 

value of 0.3 will be assigned. This fuzzified number is called 

a fuzzy number. Similarly „I‟, „F‟, and „C‟ inputs can be 

fuzzified.  

In the next step of the algorithm, all the fuzzy inputs will 

be verified against expert knowledge based fuzzy rules 

(Figure 7). This process is called a fuzzy reasoning process 

also known as a fuzzy inference. Every rule is applied to all 

the fuzzy inputs and the results from each rule are 

aggregated using a “maximum of mean value” function.  

 

 
Figure.7AVS reliability prediction fuzzy rules 

 

Fuzzy rules are expressed in linguistic statements and they 

represent how the algorithm decides to assign a fuzzy input 

to a fuzzy output space. For example, in rule #1 (Figure 7), 

“if (D is L) and (I is L) and (C is L) then the reliability is H,” 

L and H are linguistic labels used to represent membership 

functions. When the „and‟ operator is used in a rule, the 

result of the rule application will get the minimum 

membership value out of all the fuzzy inputs used in the 

rule. For example, assume the following membership 

grades/values are assigned based on the fuzzify step for each 

input („D‟, „I‟, „F‟, „C‟):  µD = 0.3, µI = 0.4, µF = 0.2, and µC 

= 0.1. With these membership grades, when the rule#1 is 

applied, the result will be as follows: 

 

 D ˄ I ˄ F ˄ C = min (µD µI µF µC)            (8) 

 

When the „or‟ operator is used in a rule, the result of the 

rule application will get the maximum membership value out 

of all the fuzzy inputs used in the rule. For example, assume 

the following membership grades/values are assigned based 

on the fuzzify step for each input („D‟, „I‟, „F‟, „C‟):  µD = 

0.3, µI = 0.4, µF = 0.2, and µC = 0.1. With these membership 

grades, when the rule#12 is applied, the result will be as 

follows: 

 

 D ˄ I ˄ F ˄ C = max (µD µI µF µC)            (9) 

 

 

From (8), the result of the rule#1 is min (0.3 0.4 0.2 0.1) = 

0.1. From (9), the result of the rule #12 is min (0.3 0.4 0.2 

0.1) = 0.4. Similarly all the rules will be applied and a 

resulting output distribution is obtained (Figure 8). 

 

 
Figure.8 Output distribution 

 

Defuzzification or defuzzify is the next step in the 

algorithm. In this step, the output distribution obtained from 

the previous step is aggregated and a mean of maximum 

(MOM) function is applied to it to get a crisp output number. 

A detailed explanation of MOM defuzzification process is 

found in [14]. Figure 9 shows AVS reliability output 

membership functions. Using the output membership 

functions, the MOM process maps a crisp output number. 

The number obtained from the defuzzification process is the 

AVS reliability prediction number. This number is the 

predicted probability that the AVS will work defect-free. For 

example, if AVS reliability prediction number is 1, then it 

means an AVS is 100% defects-free. If the number is 0, then 

the AVS is full of defects. If the number is 0.5, then the 

AVS is 50% defect-free. Figure 10 shows the entire fuzzy 

logic process to obtain AVS reliability prediction number. 

Based on the example dataset, the predicted AVS reliability 

number is 0.615 (Figure 10). 

Based on the current AVS reliability number obtained 

during a given development phase, project managers can 

take corrective measures to improve the current development 

situation by planning to capture missing details. Higher the 

predicted AVS reliability number, lesser the probability of 

defects. 

 

 
 

Figure.9 AVS reliability Fuzzy membership functions 

 

 

 

 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 8 of 9 

 
Figure.10 AVS reliability Fuzzy membership functions 



Proceedings of the 2011 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Software reliability prediction for Army vehicle. 

UNCLASSIFIED: Dist A. Approved for public release 

Page 9 of 9 

CONCLUSION 
We introduced the AVS reliability prediction metrics, 

which are simple to use so that a person with ordinary 

computer skills can investigate ITAD and collect data for 

calculating metrics values. The AVS reliability prediction 

algorithm is simple and a tool can be developed to perform 

predictions. Since our research is in its initial stages, we are 

in the process of validating and improving our work on a 

practical AVS development project 

 

DISCLAIMER 
Disclaimer: Reference herein to any specific commercial 

company, product, process, or service by trade name, 

trademark, manufacturer, or otherwise, does not necessarily 

constitute or imply its endorsement, recommendation, or 

favoring by the United States Government or the 

Department of the Army (DoA). The opinions of the 

authors- expressed herein do not necessarily state or reflect 

those of the United States Government or the DoA, and shall 

not be used for advertising or product endorsement purposes. 

 

 

REFERENCES 

[1] Department of Defense, “A Guide for Achieving 

Reliability, Availability, and Maintainability”, 

Dimensions,” DoD Guide, 2005. 

[2] A.  Immonen, and E.  Niemela, "Survey of Reliability 

and Availability Prediction Methods from the Viewpoint 

of Software Architecture,” Software and Systems 

Modeling, 2007. 

[3] S. Mohanta, G. Vinod, A. K. Gosh, and R. Mall, “An 

Approach for Early Prediction of Software Reliability,” 

ACM SIGSOFT Software Eng. Notes, vol 35, num. 6, 

pages 1-9, 2010. 

[4] W.Wang, Y.Wu, and M. Chen, “An Architecture-based 

Software Reliability Model,” Proceedings of the Pacific 

Rim International Symposium on Dependable 

Computing, pages 143–150, 1999. 

[5]K. Goseva-Popstojanova, K. S. Trivedi. “Architecture–

Based Approach to Reliability Assessment of software 

systems,” Performance Evaluation 45, pages 179-204, 

2001. 

[6] S. S. Gokhale and K. S. Trivedi, “Analytical Models for 

Architecture-based Software Reliability Prediction: A 

Unification Framework,” IEEE Trans. on Reliability, 

55(4), pages 578–590, 2006. 

[7] N. Nagappan, Williams, L., Vouk, M.A., "Towards a 

Metric Suite for Early Software Reliability Assessment," 

International Symposium on Software Reliability 

Engineering, FastAbstract, Denver,CO, pages 238-239, 

2003. 

[8] C. Smidts and D. Sova, “An Architectural Model for 

Software Reliability Quantification: Sources of Data,” 

Reliability Engineering & System Safety, 64(2), pages 

279–290, 1999. 

[9] W. Kong,  Y. Shi, and  C. S. Smidts, "Early Software 

Reliability Prediction Using Cause-effect Graphing 

Analysis," The 53rd Annual Reliability and 

Maintainability Symposium (RAMS 2007), pages 173 - 

178, 2007. 

[10] S. Yacoub, B. Cukic, and H. H. Ammar, “A Scenario-

Based Reliability Analysis Approach for Component-

Based Software,” IEEE Transactions on Reliability, vol 

53, num. 4, pages 465-480, 2004. 

 [11] L. A. Zadeh “Fuzzy Sets,” Inform. Contr., vol 8, num. 

3, pages 338-353, 1965. 

[12] L.A. Zadeh, “Is There a Need for Fuzzy Logic,” 

Information Sciences, vol 178, pages 2751-2779, 2008. 

[13] L. Zadeh, “Fuzzy Logic,” Computer, Vol 21, Num. 4, 

pages 83–93, 1988 

[14]http://www.cs.princeton.edu/courses/archive/fall07/cos4

36/HIDDEN/Knapp/fuzzy004.htm 

 

 


